Physical Association of PDK1 with AKT1 Is Sufficient for Pathway Activation Independent of Membrane Localization and Phosphatidylinositol 3 Kinase

نویسندگان

  • Zhiyong Ding
  • Jiyong Liang
  • Jin Li
  • Yiling Lu
  • Vathsala Ariyaratna
  • Zhimin Lu
  • Michael A. Davies
  • John K. Westwick
  • Gordon B. Mills
چکیده

Frequent activation of the AKT serine-threonine kinase in cancer confers resistance to therapy. AKT is activated by a multi-step process involving phosphatidylinositide (PtdIns) phosphate-mediated recruitment of AKT and its upstream kinases, including 3-Phosphoinositide-dependent kinase 1 (PDK1), to the inner surface of the cell membrane. PDK1 in the appropriate context phosphorylates AKT at threonine 308 (T308) to activate AKT. Whether PtdIns(3,4,5)Ps (PtdInsP3) binding and AKT membrane translocation mediate functions other than formation of a functional PDK1::AKT complex have not been fully elucidated. We fused complementary fragments of intensely fluorescent protein (IFP) to AKT1 and PDK1 to induce a stable complex to study the prerequisites of AKT1 phosphorylation and function. In the stabilized PDK1-IFPC::IFPN-AKT1 complex, AKT1 T308 phosphorylation was independent of PtdIns, as demonstrated by treatment with Phosphatidylinositol 3 Kinase (PI3K) inhibitors. Further when interaction with PtdIns and the cell membrane was prevented by creating PH-domain mutants of AKT1 (R25A) and PDK1 (R474A), AKT1 phosphorylation on T308 was maintained in the PDK1-IFPC::IFPN-AKT1 complex. The PDK1-IFPC::IFPN-AKT1 complex was sufficient for phosphorylation of known AKT substrates, and conferred resistance to inhibitors of PI3K (LY294002, PI103, GDC0941 and TGX286) but not inhibitors of the downstream TORC1 complex (rapamycin). Thus the locus of action of targeted therapeutics can be elucidated by the constitutively active AKT1 complex. Our data indicate that PtdIns and membrane localization are not required for AKT phosphorylation and activation, but rather serve to induce a functional physical interaction between PDK1 and AKT. The PDK1-IFPC::IFPN-AKT1 complex provides a cell-based platform to examine specificity of drugs targeting PI3K pathway components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential roles of phosphoinositide-dependent protein kinase-1 and akt1 expression and phosphorylation in breast cancer cell resistance to Paclitaxel, Doxorubicin, and gemcitabine.

3-Phosphoinositide-dependent protein kinase-1 (PDK1) and Akt1 are two closely related components of the phosphatidylinositol-3 kinase (PI3K) pathway, which is aberrantly regulated in breast cancer. Despite the importance of PDK1, few studies have evaluated it as a potential target for cancer therapy compared with studies of Akt1. We hypothesized that PDK1 is a superior target in the PI3K pathwa...

متن کامل

Effect of phosphoinositide-dependent kinase 1 on protein kinase B translocation and its subsequent activation.

In this report we investigated the function of phosphoinositide-dependent protein kinase 1 (PDK1) in protein kinase B (PKB) activation and translocation to the cell surface. Wild-type and PDK1 mutants were transfected into HeLa cells, and their subcellular localization was analyzed. PDK1 was found to translocate to the plasma membrane in response to insulin, and this process did not require a f...

متن کامل

PI3 kinase directly phosphorylates Akt1/2 at Ser473/474 in the insulin signal transduction pathway

Insulin stimulated translocation of the glucose transporter GLUT4 from the cytosol to the plasma membrane in a concentration (1  nM-1  μM)-dependent manner and increased glucose uptake in 3T3-L1 adipocytes. Insulin-induced GLUT4 translocation to the cell surface was prevented by the phosphoinositide 3 kinase (PI3K) inhibitor wortmannin, the 3-phosphoinositide-dependent protein kinase 1 (PDK1) i...

متن کامل

AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer.

Dysregulation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway occurs frequently in human cancer. PTEN tumor suppressor or PIK3CA oncogene mutations both direct PI3K-dependent tumorigenesis largely through activation of the AKT/PKB kinase. However, here we show through phosphoprotein profiling and functional genomic studies that many PIK3CA mutant cancer cell lines and human breast...

متن کامل

Transformation of Mammary Epithelial Cells by 3-Phosphoinositide-dependent Protein Kinase-1 (PDK1) Is Associated with the Induction of Protein Kinase C

3-Phosphoinositide-dependent protein kinase 1 (PDK1) is a mediator of multiple signaling pathways coupled to growth factor receptor activation in human cancers. To evaluate the role of PDK1 in mammary gland oncogenesis, COMMA-1D mouse mammary epithelial cells were retrovirally transduced with PDK1, and transformation was measured by anchorage-independent growth in soft agar. PDK1-expressing cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010